View Single Post

Bakhtosh's Avatar


Bakhtosh
01.28.2012 , 07:29 AM | #32
Kann es unentdeckte chemische Elemente geben?



Jeder hat schon mal das Periodensystem der Elemente gesehen – eine Tabelle in der chemische Elemente nach ihrer Kernladungszahl nummeriert und nach bestimmten Eigenschaften in Perioden und Gruppen eingeteilt sind.

Momentan sind in der Tabelle 118 chemische Elemente erfasst. Weitere Elemente wurden nach eigenen Aussagen bereits in einem Kernforschungsinstitut bei Dubna hergestellt, aber noch nicht durch andere Forschungsgruppen bestätigt.

Nur weil es 118 Elemente in dem Periodensystem gibt, heißt es aber noch nicht, dass es nur 118 unterschiedliche Atome gibt. Die Ordnungszahl 118 gibt nur die Anzahl der Protonen im Atomkern an. Ein Atomkern besteht aber nicht nur aus Protonen, sondern auch aus Neutronen, so kommt zum Beispiel das stabile Element Eisen in der Natur in vier unterschiedlichen Formen vor: mit 28, 30, 31, 32 Neutronen. Man bezeichnet die unterschiedlichen Atome des gleichen chemischen Elements als Isotope. Eisen hat also 4 stabile Isotope und noch etwa 20 weitere instabile Isotope.

Hier die Nukleoidkarte

http://cms.uni-konstanz.de/fileadmin..._changed02.jpg

Draufklicken zum vergrössern

Als Isotope bezeichnet man Nuklide in ihrem Verhältnis zueinander, wenn ihre Atomkerne gleich viele Protonen (gleiche Ordnungszahl), aber verschieden viele Neutronen enthalten. Die Isotope eines und desselben Elements haben also verschiedene Massenzahlen, verhalten sich aber chemisch weitgehend identisch. Die Bezeichnung Isotop ist älter als der allgemeinere Begriff Nuklid und wird daher nach wie vor oft gleichbedeutend mit Nuklid benutzt.

In der Natur existieren 256 Nuklide, die nach derzeitigem Kenntnisstand für stabil gehalten werden, und etwa 80 radioaktive Nuklide. Weit über tausend weitere Radionuklide wurden künstlich erzeugt.

Nur weil es 256 Nuklide gibt, heisst das nicht das es neue Elemente sind. Es sind nur Elemente mit anderer Neutronenzahl, die dann auch stabiel sind.
Um auch alle Nuklide in eine Tabelle zu bringen, benutzen Kernphysiker die Nuklidkarte. Die Nuklidkarte ist ein zweidimensionales Koordinatensystem mit der Protonenzahl auf der Y-Achse und der Neutronenzahl auf der X-Achse, auf der alle bekannten Nuklide (Atome mit unterschiedlichen Anzahl von Protonen und Neutronen) mit ihren wichtigsten Eigenschaften eingetragen sind.

Man erkennt, dass alle schwarzen Kästchen, die stabile Nuklide repräsentieren, auf einer etwas nach unten gekrümmten Geraden befinden, welche als das Stabilitätstal bezeichnet wird. Umringt werden diese stabilen Elemente von ihren Isotopen.

Dort wo sich die letzten Koordinaten treffen ( Protonen 82, Neutronen 126 ) , dass ist Blei.
Blei ist das letzte stabile Element in dieser Kerngrösse.

Doch warum ist diese Tabelle nicht komplett ausgefüllt? Sind es alles Plätze für nicht entdeckte Nuklide?


Nehmen wir einen beliebigen Atomkern und fügen immer mehr Neutronen dazu, so sinkt mit jedem zusätzlichen Neutron die Separationsenergie (dies kann man mit der Bethe-Weizsäcker-Formel zeigen). Die Neutronen-Separationsenergie ist die Energie, die man aufwenden muss um ein Neutron aus dem Kern rauszuholen. Wenn man also einem Atomkern immer mehr Neutronen zufügt, können diese auch leichter wieder entfernt werden. Ab einer gewissen Anzahl von Neutronen im Kern (die für jedes Element anders ist), kostet es überhaupt keine Energie mehr ein Neutron wieder aus dem Kern zu entfernen oder anders gesagt, jedes weitere Neutron wird nicht mehr an den Kern gebunden.

Die Bethe-Weizsäcker-Formel ist eine Formel zur Beschreibung der Bindungsenergie von Atomkernen nach dem Tröpfchenmodell. Der Begriff Bindungsenergie kann als Synonym zum Begriff potentielle Energie in der klassischen Physik betrachtet werden. Im sogenannten Tröpfchenmodell werden die Nukleonen wie Moleküle eines inkompressiblen geladenen Flüssigkeitströpfchens betrachtet.

Aus diesem Grund können Kerne nur ein begrenzte Anzahl von Neutronen aufnehmen. Das gleiche gilt auch für Protonen. Dadurch bekommt man in der Nuklidkarte links und rechts von dem Stabilitätstal Grenzen jenseits derer keine Kerne existieren können. Diese Grenzen werden als Neutronen- bzw. Protonen Drip Line oder auf Deutsch Abbruchkante bezeichnet.

Um neue stabile Atome zu bekommen gibt es also rein theoretisch nur einen Weg und dieser führt entlang des Stabilitätstals. Aber auch hier gibt es eine Grenze. Mit zunehmender Nukleonenanzahl tritt spontane Kernspaltung auf (was man ebenfalls mit der Bethe-Weizsäcker-Formel zeigen kann), das heißt ein Kern zerfällt in zwei kleinere Kerne.
Aus diesem Grund endet auch das Stabilitätstal mit dem Nuklid 208Pb (Blei), alle Elemente mit höheren Protonenzahl als 82 sind instabil und nur wenige von ihnen kommen in der Natur vor.

Science-Fiction Fans sind an dieser Stelle wohl enttäuscht, keine neuen Supermetalle für Schutzschilde gegen Energielaser, keine neuen Treibstoffe wie Tylium ect.. Fiktion bleibt Fiktion oder gibt es vielleicht doch einen Ausweg?

Nun, die Kernphysik ist ein sehr kompliziertes Gebiet und die Betrachtung, die ich oben dargestellt habe, basiert auf einem sehr einfachen Tröpfchenmodell. Genaue Berechnungen können nicht mehr analytisch durchgeführt werden und müssen an Computern simuliert werden. Damit die Rechenzeit die Lebensdauer des Universums nicht übersteigt werden viele Näherungen gemacht. Diese Näherungen verfälschen aber im Endeffekt die endgültige Aussage.



Trotzdem, wie man es aber auch dreht, die Berechnungen zeigen, dass es keine weiteren stabilen Elemente geben kann. Es wird zwar eine Insel der Stabilität vermutet, aber dass die Elemente in diesem Bereich wirklich stabil sind ist sehr unwahrscheinlich.



MFG

Bak
~~ Thelyn Ennor ~~
Multigaming Guild since 2005
It's The Way We Play